Institute for Software Research, International

Usability 1

Methods: Decide: What to Design

Usability attributes

Usability through prototyping

Classes of prototyping tools

Today

Back to the users

Usability attributes

Usability through prototyping

Classes of prototyping tools

Sequence and Structure

- Flow model <-> sequence model
- Storyboards <-> User environment design
- Use case model <-> ?
 - object model
 - prototype

Interactions with Users

- Use case modeling
- 7. Don't involve subject matter experts in creating, reviewing, or verifying use cases.
 - (They'll only raise questions!)
- 8. If you involve users at all in use-case definition, just "do it."
 - (Why bother to prepare for any time with the users? It just creates a bunch of paperwork, and they keep changing their minds all the time, anyway.)
- 9. Write your first and only use-case draft in excruciating detail.
 - (Why bother iterating with end users when they don't even know what they want, and they only want you to show them meaty stuff, anyway?)
- 10. Don't validate or verify your use cases.
 - (That will only cause you to make revisions and do more rework, and it will give you change control problems during requirements gathering. So forget about it!)

From Ellen Gottesdiener
Today
- Back to the users
- Usability attributes
- Usability through prototyping
- Classes of prototyping tools

Usability
- “The ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a system or component”
- Usability and utility -- from user’s perspective
 - Utility: does it do the right things?
 - Usability: does it do these things right?

Is Usability Important?
- Example: intranet usability, e.g.,
 - Research a company policy
 - Find a form
 - Find information about a department or person
 - Enter an expense report
- Study performed user tests
 - Employees in 14 companies
 - Sixteen common tasks
- Results
 - Low usability intranets: $3,000/employee/year
 - Average usability: $2,000/employee/year
 - High usability: $1,600/employee/year

What Is Usability?
- Usability Attributes
 - Learnability
 - Efficiency
 - Memorability
 - Errors
 - Satisfaction
Learnability

- Often the most important characteristic
 - How much investment in learning is user willing to make?
 - If too hard to learn, other characteristics don’t matter
- Can readily be measured
 - Time to reach specified level of proficiency, e.g.,
 - perform a bank transaction successfully,
 - Create, save, and print a document
- For business professionals, most highly rated characteristics:
 - Easy-to-understand error messages
 - Possible to do useful work before learning it all
 - Availability of undo
 - Confirming question before execute risky command

Systems Designed for Novice and Expert Users

Novice/Expert Tradeoffs

- Different interaction styles, e.g., menus versus function keys
- More capability for experts, but may make “simple” tasks hard
 - E.g., MS Word versus FrameMaker
- May be possible to “ride” both curves, e.g.,
 - Judicious use of “accelerators”
 - Multiple interaction styles, such as “wizard” and manual configuration

Efficiency of Use

- Expert’s performance at asymptote
- Most users plateau after learning “enough”
 - Often reflects suboptimal investment
- Measurement
 - Define “experienced” users
 - Self-report
 - Some number of hours, weeks, months of use
 - Observe for some number of hours, or until curve flattens
 - Measure time to complete typical set of tasks
Memorability

- Most important for casual, occasional users, e.g.,
 - Utility programs
 - Tax programs
 - Kerberos, KClient, etc.
- Measurement
 - Time for typical tasks with users who have been away from system for specified amount of time
 - This attribute measured less often than others

Few and Noncatastrophic Errors

- Action that does not accomplish user goal
- Vary widely in effects
 - Trivial
 - Annoying
 - Create faulty product or destroy work
- Measurement
 - Number of errors while performing standard task
 - Should be no catastrophic errors

Subjective Satisfaction 1

- How "pleasant" it is to use the system
- Extremely important for discretionary software
- Also important for adoption generally
- Measurement
 - Interview -- rich but nonquantitative data
 - Likert scales, e.g.,
 "It was very easy to learn how to use this system."
 "This system was very pleasant to use."
 "Using this system was a very frustrating experience."
 - Each statement is followed by 5 or 7 point agreement scale:

Subjective Satisfaction 2

- Measurement (ctd.)
 - Semantic differential rating scales, e.g.,
 "Please place a check in a position that best describes X"
 - Pleasing
 - Irritating
 - Simple
 - Complicated
 - Fast to use
 - Slow to use
 - Subjects tend to give slightly inflated ratings, e.g., 3.5, not 3.0, as average on 5-point scale
 - Scales need to be pilot tested
Today

- Learning from codified experience, grasping uniqueness
- Usability attributes
- Usability through prototyping
- Classes of prototyping tools

Prototyping

- Desirable properties
 - Cheap to construct
 - Appear rough
 - Malleable enough to allow exploration of alternatives
- Purposes
 - Evaluate alternative approaches, e.g.,
 - GUI
 - Command line
 - Tune interface ideas, e.g.,
 - Clusters of functions
 - Choose interaction mechanism, e.g., button or menu
 - Identify omissions

Prototype Interviews

- Purpose is to have the user simulate performing specific work with the prototype
- Information gained triggers a mini-iteration of the whole modeling-interpreting-design cycle

Prototype Fidelity

<table>
<thead>
<tr>
<th>Low Fidelity</th>
<th>High Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Interface Builders (plus components & scripting language)</td>
</tr>
<tr>
<td>Façade Tools</td>
<td></td>
</tr>
</tbody>
</table>
Low Fidelity Prototypes

- Advantages
 - Very cheap to construct
 - Can change during prototype interview
 - Can iterate quickly
- Disadvantages
 - Capturing user behavior is awkward
 - Cannot execute

Medium Fidelity Prototypes

- Create screen appearance, use canned data
 - E.g., Powerpoint animation
- Advantage
 - Appears to execute
 - Can capture “video” of entire interaction
- Disadvantages
 - Nothing is reusable
 - May create too “finished” of an appearance
 - Difficult to edit on the fly
 - May oversell application

High Fidelity Prototypes

- Advantages
 - Easily edited and run
 - May be able to use the code
- Disadvantages
 - Often need to make design commitments too early
 - E.g., select actual components
 - Involves significant effort to make executable
 - Write scripts
 - Difficult to edit with user

Hybrid Prototyping System

- Denim
 - http://guir.berkeley.edu/projects/denim/