Topic Overviews

17-939A
Software Analysis, Security for SE

Vahe Poladian

Software Analysis - 1

> The Problem
 • Does the design of a system capture the intended purpose?
 • Does the code conform to the design?
 • Can we verify code for correctness? Partial correctness?
 • What abstractions do we need to analyze design and code?
 • What tools do we need to automate the analysis?

> A Definition
 • “The extraction of behavioral information from the software, represented as an abstract model or code” – Jackson, Rinard

> The Beginnings
 • 1945, first bug, a moth, found by Grace Hopper in ENIAC,
 • 1968, NATO Conference:
 – the problem of “exponential growth of errors” recognized,
 – acceptable threshold for errors per line of code discusses,
Software Analysis - 2

> The State of The Art
 • Analysis of models
 – model checking: (near)-exhaustive search of the state space,
 – theorem proving: expressing the statement of the program in logic
 • Analysis of code
 – static and dynamic,
 – sound and unsound,
 – issues: multi-threaded programs, distributed systems,

> The Future
 • Bridge the gap between model and source code,
 • Allow for incremental and modular analysis,
 • Consider cost, analyze only partially what matters most,
 • Improve precise, sound analysis for infrastructural software.

Security for SE - 1

> The Problem
 • Manage and distribute digital information securely,
 • Ensure that software systems comply with laws of governments and regulations of commerce,
 • Educate user communities about security and the possible risks resulting from lack or failure of security,

> The Milestones
 • Willis H. Ware, late 1960s, a pioneer in security and privacy,
 • Mandatory access controls, 1970s, formulation of security policies,
 • RSA, 1980s, strong cryptographic means for securing data,
 • Security protocols popularized in internet applications, 1990s,
Security for SE - 2

> The State of the Art in the Industry
 • Security protocols in widespread use; perimeter security;
 • Managed security emerging; insurance;
 • Security perceived as an economic value added;
 • Security for pervasive devices; faster cryptographic algorithms;

> … and Research Directions for The Future
 • Integrate security considerations early into life-cycle; apply cost-benefit analysis to allocate resources for security requirements,
 • Integrate security into legacy systems as they present weak links,
 • Improve software copy-protection and watermarking techniques,
 • Implement techniques for formulating desired security properties and develop tools for evaluating the security of systems,
 • Develop automated infrastructure for post-deployment of systems,