Case Studies as Research Method in Software Engineering

Kevin Bierhoff

Outline

- Motivation by example
- Characterization
- Case study design
- Validation with case studies
- Summary

Futurebus+ validated the idea of model checking by finding bugs
- Formal description of non-trivial part of the IEEE Futurebus+ standard
- Model checker could find bugs
- This is the first time formal methods found bugs in an IEEE standard

TCAS II started as a case study and ended as an official FAA standard
- Specification of the “Traffic Alert and Collision Avoidance System” with Statecharts
- Research project aimed at validating a requirements engineering technique by documenting an ongoing standardization effort of the Federal Avionics Administration
- The project turned into the actual standard
A case study investigates a real-world phenomenon with a specific hypothesis

- Empirical investigation of a complex setting
 - Hard to separate from its real-world context
 - Explanation, description, causal analysis, exploration
- Multiple sources of evidence
 - To cope with \#variables >> \#data points
 - To triangulate valid results
- Based on a theory
 - To structure the problem domain
 - To guide data collection and analysis

Case studies are directed but should not be biased

Outline

- Motivation by example
- Characterization
- Case study design
- Validation with case studies
- Summary

4 common kinds of case studies

- Research questions
 - Typically how? or why?
 - Explanatory study
 - Decide between two rival theories
 - Descriptive study
 - Characterize a phenomenon
 - Causal analysis
 - Causes for a phenomenon
 - Exploratory study
 - Find out more
Case studies intend to confirm proposition about how or why question …

- Research questions
 - Typically how? or why?
 - Explanatory study
 - Descriptive study
 - Causal analysis
 - Exploratory study

- Study propositions
 - Concrete hypothesis about the research question
 - Guide search for evidence
 - Exploratory studies typically without proposition

… but there is little established practice in doing so

- Units of analysis
 - Define the “cases” to study
 - Can be anything

- Logic to link data to propositions
 - The concrete method used
 - No accepted standards

- Interpretation criteria
 - Analytic generalization
 - Can’t use statistics

We look into units and logics in detail now

Multiplication increases credibility

- Multiple-case studies
 - Literal replication
 - Logical replication
 - Replication ≠ sampling
 - Theoretical framework to generalize to new cases
 - No subunit pooling

- Multiple units of analysis
 - Distinguish multiple “sub-units” within a case
 - Relay back to case

Ideally we want to have lots of good data to corner our hypothesis

- Data analysis approach
 - No established strategies and techniques
 - Develop justification of what to analyze and why
 - Driven by theory
 - Present all evidence
 - Explore alternative interpretations
 - Collect data for refutation
 - This is often forgotten

- Analytic techniques
 - Pattern matching
 - Explanation building
 - Time-series analysis
 - Logic models
 - Cross-case synthesis

- Triangulation
 - Data sources
 - Evaluators
 - Theories
 - Methods
All analytic techniques rely on fitting specific events to theory predictions

- Pattern matching
 - Pattern = Co-occurrence of events
 - Rival explanations predict different patterns
- Explanation building
 - Apply a pre-built explanation
- Time-series analysis
 - Identify events over time
 - Compare to predictions
- Logic models
 - Match chain of events with cause-and-effect theories
- Cross-case synthesis
 - Match cases (mostly quantitatively)

Outline

- Motivation by example
- Characterization
- Case study design
- Validation with case studies
- Summary

Research validations with case studies follow a common design

<table>
<thead>
<tr>
<th>Research question</th>
<th>How does my approach perform compared to common practice? (explanatory: new vs. old)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study proposition</td>
<td>Using my approach helps solving the common problem I am trying to solve</td>
</tr>
<tr>
<td>Units of analysis</td>
<td>Subjects or objects that my approach applies to</td>
</tr>
<tr>
<td>Data linking logic</td>
<td>Find interesting example of common practice</td>
</tr>
<tr>
<td></td>
<td>Apply my approach</td>
</tr>
<tr>
<td></td>
<td>Compare performance in dealing with the problem I try to solve</td>
</tr>
<tr>
<td></td>
<td>Do this by finding specific situations where my approach obviously works (often pattern matching)</td>
</tr>
<tr>
<td>Interpretation criteria</td>
<td>Argue that the studied units were representative and the problems solved by my approach relevant</td>
</tr>
</tbody>
</table>

Construct, internal, external validity? Reliability?

Case studies are very easily invalid

Threats to case studies

- Construct validity
 - Study design driven by subjective hypothesis
- Internal validity
 - Researchers often involved themselves
- External validity
 - Arbitrary case selection
- Reliability
 - Researcher involvement
Outline

- Motivation by example
- Characterization
- Case study design
- Validation with case studies
- Summary

The piggy bag

- Case studies are hard to get right
 - Design carefully if you want to make a real point
- They are largely driven by a hypothesis
 - That easily looks very subjective to readers
- Case studies commonly used in validation
 - Regularly involves researchers doing their thing
 - That looks very, very, very subjective to readers
- Nonetheless probably good practice to increase validity of research methods