Software Cost Estimation

Elsa Golden
17939-S05
April 26, 2005

Stage 3 external enhancement & exploration
experimental validation by outside groups

- Question:
 - Are software cost estimating models generalizable to environments in which they were not developed?
 - Are non-SLOC-based models as accurate as SLOC-based models?
- Result:
 - Selected 4 models for comparison:
 - Function Points (Nonproprietary, Non-SLOC-based)
 - ESTIMACS (Proprietary, Non-SLOC-based)
 - COCOMO (Nonproprietary, SLOC-based)
 - SLIM (Proprietary, SLOC-based)
 - All models show need for calibration to be generalizable.
- Are nonproprietary models as accurate as proprietary models?
 - No significant difference between proprietary and nonproprietary models.
 - Function points model validated by data.
- Are non-SLOC-based models as accurate as SLOC-based models?
 - Establish parameters for applying models to completed projects through interviews and surveys.
 - Get datasets for 16 projects from data-processing applications company.

Stage 3 (cont.)

- Question:
 - Cost estimation using function points is accused of having poor interrater reliability; the extent to which independent counts of similar points agree. Experimental comparison to other counting methods, Kemerer (1987, 1993).
 - What is the interrater reliability of a newer, alternative function point counting method?
 - What is the intermethod reliability of these two methods?
- Result (Enhanced method):
 - Get datasets for 27 projects from a large engineering company.
 - Two methods selected for evaluation: Function-Point Method and ER modeling method.
 - IFPUG 3.0 IFPUG 3.0 -- Albrecht Standard method of deriving function point counts selected as “Standard.”
 - IFPUG 3.0 IFPUG 3.0 -- Albrecht Standard method of deriving function point counts selected as “Standard.”
 - Price-S (RCA) -- ER modeling method has potential for FP count automation.
- Intermethod reliability also seemed to be strongly correlated.
- Intermethod reliability is found to be high using the Albrecht Standard method and the Entity-Relationship method.

Timeline

- 1960s: basic research
- 1980s: enhancement & exploration (internal)
- 1990s: enhancement & exploration (external)
- 2000s: enhancement & exploration (internal)
- 2010s: appearance of a usable system
- 2015: SLOC basic research
- 2020: SLOC enhancement & exploration (external)
- 2025: SLOC enhancement & exploration (internal)
- 2030: SLOC basic research
Timeline

1960s: basic research

Delphi (Rand)

Mid-1970s: appearance of a usable system

Late-1970s: development & extension

1980s: enhancement & exploration (internal)

1990s: enhancement & exploration (external)

Popularization of concept

Boehm (2003)

Software engineering has changed:

- Software much bigger part of systems than 30 years ago
 - Affects cost, schedule, value
 - High proportion of software failures caused by value-oriented issues
 - Lack of user input
 - Incomplete or changing requirements
 - Lack of resources
 - Unrealistic expectations and time frames
 - Value considerations must be integrated into existing and emerging SE principles and practices

Value-Based SE

Value-Based SE maturity means making room for emerging challenges

- **Value-Based Agenda**
 - Requirements engineering
 - Architecting
 - Design & development
 - Verification & validation
 - Planning & control
 - Risk management
 - Quality management
 - People management

- **Principles & practices to address challenge areas of SE as they emerge**

- **Candidate Foundation Elements**
 - Benefits realization analysis
 - Stakeholder value proposition elicitation & reconciliation
 - Business case analysis
 - Continuous risk & opportunity management
 - Concurrent system & software engineering
 - Value-based monitoring & control
 - Change as Opportunity

Stage 4: popularization

model, no - concepts, yes

- Boehm’s roadmap for realizing benefits of value-based software engineering

Stage 4b and up

many related areas in earlier stages of maturation original question becomes subset of the problem